Identification and characterization of two huge protein components of the brush border cytoskeleton: evidence for a cellular isoform of titin
نویسندگان
چکیده
Two extremely high molecular weight proteins were found to be components of the intestinal epithelial cell brush border cytoskeleton. The largest brush border protein, designated T-protein, migrated on SDS gels as a doublet of polypeptides with molecular weights similar to muscle titin T I and T II. The other large brush border protein, designated N-protein, was found to have a polypeptide molecular weight similar to muscle nebulin. In Western analysis, a polyclonal antibody raised against brush border T-protein reacted specifically with T-protein in isolated brush borders and cross-reacted with titin in pectoralis and cardiac muscle samples. T-protein was distinguished from the muscle titins by an anti-cardiac titin mAb. A polyclonal antibody raised against N-protein was specific for N-protein in brush borders and cross-reacted with nothing in pectoralis muscle. Immunolocalization in cryosections of intestinal epithelia and SDS-PAGE analysis of fractionated brush borders revealed that both T-protein and N-protein are concentrated distinctly in the brush border terminal web region subjacent to the microvilli, but absent from the microvilli. EM of rotary-replicated T-protein samples revealed many of the molecules to be long (912 +/- 40 nm) and fibrous with a globular head on one end. In some of the molecules, the head domain appeared to be extended in a fibrous conformation yielding T-protein up to 1,700-nm long. The brush border N-protein was found as long polymers with a repeating structural unit of approximately 450 nm. Our findings indicate that brush border T-protein is a cellular isoform of titin and suggest that both T-protein and N-protein play structural roles in the brush border terminal web.
منابع مشابه
Cellular titin localization in stress fibers and interaction with myosin II filaments in vitro
We previously discovered a cellular isoform of titin (originally named T-protein) colocalized with myosin II in the terminal web domain of the chicken intestinal epithelial cell brush border cytoskeleton (Eilertsen, K.J., and T.C.S. Keller. 1992. J. Cell Biol. 119:549-557). Here, we demonstrate that cellular titin also colocalizes with myosin II filaments in stress fibers and organizes a simila...
متن کاملMolecular Model of the Microvillar Cytoskeleton and Organization of the Brush Border
BACKGROUND Brush border microvilli are approximately 1-microm long finger-like projections emanating from the apical surfaces of certain, specialized absorptive epithelial cells. A highly symmetric hexagonal array of thousands of these uniformly sized structures form the brush border, which in addition to aiding in nutrient absorption also defends the large surface area against pathogens. Here,...
متن کاملP-121: Cloning and Expression of The Inosine Triphosphate Pyrophosphatase Gene Variant II in E.coli
Background Environmental and cellular inappropriate conditions can cause damages to cells nucleotide poll. Deamination and oxidation damages interfere with cell�s vital reactions. Inosine triphosphate pyrophosphatase (ITPA), an evolutionary conserved enzyme, plays a critical role in elimination of non-canonical bases. In human genome, the ITPA gene is located on chromosome 20 short arm and tran...
متن کاملMultiple unconventional myosin domains of the intestinal brush border cytoskeleton.
Representatives of class V and class VI unconventional myosins are identified as components of the intestinal brush border cytoskeleton. With brush border myosin-I and myosin-II, this brings to four the number of myosin classes associated with this one subcellular domain and represents the first characterization of four classes of myosins expressed in a single metazoan cell type. The distributi...
متن کاملA specifically apical sub-membrane intermediate filament cytoskeleton in non-brush-border epithelial cells.
Although many pieces of evidence support the notion of a role for the cytoskeleton in epithelial polarization, no cytoskeletal component has been found to be specifically apical, except for some actin-binding proteins. Here we report the apical distribution of a 53 kDa cytokeratin. Furthermore, this cytokeratin co-purified with biotinylated apical plasma membrane proteins in high density comple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 119 شماره
صفحات -
تاریخ انتشار 1992